met.Ttests.Anal
performs the Student's t-test on chosen sample groups. For large datasets (> 1000 variables), both the paired information and the group variance will be ignored, and the default parameters will be used for t-tests to save computational time. If you choose non-parametric tests (Wilcoxon rank-sum test), the group variance will be ignored.
Usage
met.Ttests.Anal(
mSetObj = NA,
grp1,
grp2,
nonpar = FALSE,
threshp = 0.05,
paired = FALSE,
equal.var = TRUE,
pvalType = "fdr",
all_results = TRUE,
silent = FALSE
)
Arguments
- mSetObj
Enter the name of the created mSet object (see
met.read_data
).- grp1
(Character) Enter name of the first group for the contrast
grp1 vs. grp2
. If both group arguments are empty, the first two names in the list of groups are selected.- grp2
(Character) Enter name of the second group for the contrast
grp1 vs. grp2
. If both group arguments are empty, the first two names in the list of groups are selected.- nonpar
(Logical) Use a non-parametric test (
TRUE
) or not (FALSE
).- threshp
(Numerical) Enter the adjusted p-value (FDR) cutoff.
- paired
(Logical) Is the data paired (
TRUE
) or not (FALSE
).- equal.var
(Logical) Is the group variance equal (
TRUE
) or not (FALSE
).- pvalType
(Character) p value type used to apply significances based on the chosen threshold
threshp
. Can be"fdr"
for adjusted p values or"raw"
for raw p values.- all_results
(Logical) Create a CSV file with T-Test results for all compounds (
TRUE
) or not (FALSE
).- silent
(Logical) Suppress message about the number of significant features found in the console (
TRUE
) or not (FALSE
).
References
adapted from Ttests.Anal
(https://github.com/xia-lab/MetaboAnalystR).
Author
Nicolas T. Wirth mail.nicowirth@gmail.com Technical University of Denmark License: GNU GPL (>= 2)