Package index
-
Get.bwss()
- Compute within group and between group sum of squares (BSS/WSS) for each row of a matrix which may have NA
-
Intersect()
- Multiple set version of intersect
-
Perform.permutation()
- Permutation
-
Setdiff()
- Remove the union of the y's from the common x's.
-
Union()
- Multiple set version of union
-
colFmt()
- Format font color for Markdown reports
-
delete_prefix()
- Delete Prefix
-
.onAttach()
- Run upon attaching package VisomX
-
fast.write.csv()
- Write object in CSV file
-
filter_missval()
- Filter SummarizedExperiment object based on missing values
-
flux_to_map()
- Create a metabolic map with fluxes and export as SVG file
-
get_prefix()
- Get the common prefix of words
-
make_se()
- Create a SummarizedExperiment object from a data frame
-
manual_impute()
- Imputation by random draws from a manually defined distribution
-
meanSdPlot()
- Plot row standard deviations versus row means
-
met.ANOVA.Anal()
- Perform ANOVA analysis
-
met.FC.Anal()
- Fold change analysis, unpaired
-
met.FilterVariable()
- Methods for non-specific filtering of variables
-
met.GetFC()
- Used by higher functions to calculate fold change
-
met.GetTtestRes()
- Used by higher functions to retrieve T-test p-values
-
met.PCA.Anal()
- Perform a Principal Component Analysis
-
met.PLSDA.CV()
- PLS-DA classification and feature selection
-
met.PLSDA.Permut()
- Perform PLS-DA permutation
-
met.PLSR.Anal()
- Partial least squares (PLS) analysis using oscorespls (Orthogonal scores algorithm)
-
met.PerformFeatureFilter()
- Used by higher functions for non-specific filtering of variables
-
met.PreparePrenormData()
- Prepare data for normalization
-
met.SanityCheck()
- Perform sanity check on metabolomics data
-
met.Ttests.Anal()
- Perform T-test analysis
-
met.UpdateData()
- Remove defined samples and features from the metabolomics dataset.
-
met.impute()
- Impute missing variables
-
met.initialize()
- Constructs a dataSet object for storing metabolomics data
-
met.normalize()
- Data normalization
-
met.plot_ANOVA()
- Visualize p values determined by ANOVA analysis.
-
met.plot_CorrHeatMap_Features()
- Pattern hunter, plot correlation heatmap
-
met.plot_CorrHeatMap_Samples()
- Pattern hunter, plot correlation heatmap
-
met.plot_FeatureNormSummary()
- Visualize effect of normalization on feature density distributions.
-
met.plot_ImpVar()
- Plot PLS important features
-
met.plot_PCA2DLoading()
- Plot PCA loadings and also set up the matrix for display
-
met.plot_PCA2DScore()
- Create 2D PCA score plot
-
met.plot_PCA3DLoading()
- Create 3D PCA loading plot
-
met.plot_PCA3DScore()
- Create 3D PCA Score plot
-
met.plot_PCAScree()
- Plot PCA scree plot
-
met.plot_PLS.Crossvalidation()
- Plot PLS-DA classification performance using different components
-
met.plot_PLS.Permutation()
- Plot PLS-DA classification performance using different components, permutation
-
met.plot_PLS2DLoading()
- Plot PLS-DA loadings and also set up the matrix for display
-
met.plot_PLS2DScore()
- Create 2D PLS-DA score plot
-
met.plot_PLS3DLoading()
- Create 3D PLS-DA loading plot
-
met.plot_PLS3DScore()
- Create 3D PLS-DA Score plot
-
met.plot_PLSImpScatter()
- Plot PLS important features
-
met.plot_PLS_Imp()
- Plot PLS important features
-
met.plot_SampleNormSummary()
- Visualize effect of normalization on sample density distributions.
-
met.plot_detect()
- Visualize intensities of compounds with missing values
-
met.plot_heatmap()
- Create heat map of hierarchically clustered features and samples
-
met.plot_missval()
- Plot a heatmap of compounds with missing values
-
met.plot_volcano()
- Volcano Plot
-
met.print_PCA3DLoading()
- Plot a generated 3D PCA loading plot in RStudio
-
met.print_PCA3DScore()
- Plot a generated 3D PCA scores plot in RStudio
-
met.print_PLS3DLoading()
- Plot a generated 3D PLS-DA loading plot in RStudio
-
met.print_PLS3DScore()
- Plot a generated 3D PLS-DA scores plot in RStudio
-
met.read_data()
- Construct mSet data container, read metabolomics data, filter data, and impute missing values
-
met.report()
- Generate a markdown report for metabolomics data analysis
-
met.report_test_normalization()
- Generate a markdown report for the screening of metabolomics data pre-processing methods.
-
met.test_normalization()
- Test for optimal data processing conditions
-
met.workflow()
- Perform metabolomics data analysis workflow
-
pathway_enrich()
- Pathway Enrichment Analysis
-
plot_coverage()
- Plot coverage of a SummarizedExperiment
-
png_to_gif()
- Convert PNGs to an animated GIF
-
prot.add_rejections()
- Add rejections to a SummarizedExperiment
-
prot.boxplot_intensity()
- Boxplot Intensity
-
prot.filter_missing()
- Filter proteins based on missing values
-
prot.get_kegg_pathways()
- Multiple set version of union
-
prot.get_results()
- Get Results
-
prot.impute()
- Impute missing values in a SummarizedExperiment object
-
prot.make_unique()
- Make Unique Proteins
-
prot.normalize_vsn()
- Normalize the data via variance stabilization normalization
-
prot.pca()
- PCA Analysis
-
prot.plot_bar()
- Plot bar plots for protein abundance or fold change
-
prot.plot_corrheatmap()
- Plot a correlation heatmap
-
prot.plot_density()
- Generates density plots for a SummarizedExperiment object
-
prot.plot_detect()
- Plot detectability for a SummarizedExperiment
-
prot.plot_enrichment()
- Plot pathway enrichment
-
prot.plot_heatmap()
- Plots a heatmap of the differentially expressed proteins
-
prot.plot_heatmap_all()
- Plots a heatmap of all protein abundances
-
prot.plot_imputation()
- Plot imputation results
-
prot.plot_loadings()
- Plot the loadings of a principal components analysis
-
prot.plot_missval()
- Plot missing values in SummarizedExperiment
-
prot.plot_numbers()
- Plot the number of proteins identified in a SummarizedExperiment object
-
prot.plot_pca()
- Plot Results of Principal Component Analysis
-
prot.plot_screeplot()
- SCREE plot
-
prot.plot_upset()
- Plot an UpSet enrichment plot
-
prot.plot_volcano()
- Plots a volcano plot for a given contrast
-
prot.read_data()
- Read proteomics data in table format and create SummarizedExperiment
-
prot.report()
- Report Proteomics Data
-
prot.test_diff()
- Test Differential Expression
-
prot.workflow()
- Run a complete proteomics analysis workflow.
-
prot_to_map()
- Title
-
read_file()
- Call the appropriate function required to read a table file and return the table as a dataframe object.
-
read_flux()
- Reads flux data from a file or data frame
-
rna.filter_missing()
- Filter genes based on missing values
-
rna.impute()
- Impute missing values in a SummarizedExperiment object
-
rna.make_se()
- Create a SummarizedExperiment object
-
rna.plot_bar()
- Plot bar plots for gene abundance or fold change
-
rna.plot_corrheatmap()
- Plot a correlation heatmap
-
rna.plot_heatmap()
- Plots a heatmap of the differentially expressed genes
-
rna.plot_imputation()
- Plot imputation results
-
rna.plot_numbers()
- Plot the number of genes identified in a DESeqDataSet object
-
rna.plot_pca()
- Plot Results of Principal Component Analysis
-
rna.plot_volcano()
- Plots a volcano plot for a given contrast
-
rna.read_data()
- Read Transcriptomics Data
-
rna.report()
- Generate a transcriptomics analysis report
-
rna.workflow()
- RNA sequencing workflow
-
svg_to_pdf()
- Convert SVG to PDF
-
theme_DEP1()
- theme_DEP1
-
theme_DEP2()
- Theme DEP2