Skip to contents

All functions

Get.bwss()
Compute within group and between group sum of squares (BSS/WSS) for each row of a matrix which may have NA
Intersect()
Multiple set version of intersect
Perform.permutation()
Permutation
Setdiff()
Remove the union of the y's from the common x's.
Union()
Multiple set version of union
colFmt()
Format font color for Markdown reports
delete_prefix()
Delete Prefix
.onAttach()
Run upon attaching package VisomX
fast.write.csv()
Write object in CSV file
filter_missval()
Filter SummarizedExperiment object based on missing values
flux_to_map()
Create a metabolic map with fluxes and export as SVG file
get_prefix()
Get the common prefix of words
make_se()
Create a SummarizedExperiment object from a data frame
manual_impute()
Imputation by random draws from a manually defined distribution
meanSdPlot()
Plot row standard deviations versus row means
met.ANOVA.Anal()
Perform ANOVA analysis
met.FC.Anal()
Fold change analysis, unpaired
met.FilterVariable()
Methods for non-specific filtering of variables
met.GetFC()
Used by higher functions to calculate fold change
met.GetTtestRes()
Used by higher functions to retrieve T-test p-values
met.PCA.Anal()
Perform a Principal Component Analysis
met.PLSDA.CV()
PLS-DA classification and feature selection
met.PLSDA.Permut()
Perform PLS-DA permutation
met.PLSR.Anal()
Partial least squares (PLS) analysis using oscorespls (Orthogonal scores algorithm)
met.PerformFeatureFilter()
Used by higher functions for non-specific filtering of variables
met.PreparePrenormData()
Prepare data for normalization
met.SanityCheck()
Perform sanity check on metabolomics data
met.Ttests.Anal()
Perform T-test analysis
met.UpdateData()
Remove defined samples and features from the metabolomics dataset.
met.impute()
Impute missing variables
met.initialize()
Constructs a dataSet object for storing metabolomics data
met.normalize()
Data normalization
met.plot_ANOVA()
Visualize p values determined by ANOVA analysis.
met.plot_CorrHeatMap_Features()
Pattern hunter, plot correlation heatmap
met.plot_CorrHeatMap_Samples()
Pattern hunter, plot correlation heatmap
met.plot_FeatureNormSummary()
Visualize effect of normalization on feature density distributions.
met.plot_ImpVar()
Plot PLS important features
met.plot_PCA2DLoading()
Plot PCA loadings and also set up the matrix for display
met.plot_PCA2DScore()
Create 2D PCA score plot
met.plot_PCA3DLoading()
Create 3D PCA loading plot
met.plot_PCA3DScore()
Create 3D PCA Score plot
met.plot_PCAScree()
Plot PCA scree plot
met.plot_PLS.Crossvalidation()
Plot PLS-DA classification performance using different components
met.plot_PLS.Permutation()
Plot PLS-DA classification performance using different components, permutation
met.plot_PLS2DLoading()
Plot PLS-DA loadings and also set up the matrix for display
met.plot_PLS2DScore()
Create 2D PLS-DA score plot
met.plot_PLS3DLoading()
Create 3D PLS-DA loading plot
met.plot_PLS3DScore()
Create 3D PLS-DA Score plot
met.plot_PLSImpScatter()
Plot PLS important features
met.plot_PLS_Imp()
Plot PLS important features
met.plot_SampleNormSummary()
Visualize effect of normalization on sample density distributions.
met.plot_detect()
Visualize intensities of compounds with missing values
met.plot_heatmap()
Create heat map of hierarchically clustered features and samples
met.plot_missval()
Plot a heatmap of compounds with missing values
met.plot_volcano()
Volcano Plot
met.print_PCA3DLoading()
Plot a generated 3D PCA loading plot in RStudio
met.print_PCA3DScore()
Plot a generated 3D PCA scores plot in RStudio
met.print_PLS3DLoading()
Plot a generated 3D PLS-DA loading plot in RStudio
met.print_PLS3DScore()
Plot a generated 3D PLS-DA scores plot in RStudio
met.read_data()
Construct mSet data container, read metabolomics data, filter data, and impute missing values
met.report()
Generate a markdown report for metabolomics data analysis
met.report_test_normalization()
Generate a markdown report for the screening of metabolomics data pre-processing methods.
met.test_normalization()
Test for optimal data processing conditions
met.workflow()
Perform metabolomics data analysis workflow
pathway_enrich()
Pathway Enrichment Analysis
plot_coverage()
Plot coverage of a SummarizedExperiment
png_to_gif()
Convert PNGs to an animated GIF
prot.add_rejections()
Add rejections to a SummarizedExperiment
prot.boxplot_intensity()
Boxplot Intensity
prot.filter_missing()
Filter proteins based on missing values
prot.get_kegg_pathways()
Multiple set version of union
prot.get_results()
Get Results
prot.impute()
Impute missing values in a SummarizedExperiment object
prot.make_unique()
Make Unique Proteins
prot.normalize_vsn()
Normalize the data via variance stabilization normalization
prot.pca()
PCA Analysis
prot.plot_bar()
Plot bar plots for protein abundance or fold change
prot.plot_corrheatmap()
Plot a correlation heatmap
prot.plot_density()
Generates density plots for a SummarizedExperiment object
prot.plot_detect()
Plot detectability for a SummarizedExperiment
prot.plot_enrichment()
Plot pathway enrichment
prot.plot_heatmap()
Plots a heatmap of the differentially expressed proteins
prot.plot_heatmap_all()
Plots a heatmap of all protein abundances
prot.plot_imputation()
Plot imputation results
prot.plot_loadings()
Plot the loadings of a principal components analysis
prot.plot_missval()
Plot missing values in SummarizedExperiment
prot.plot_numbers()
Plot the number of proteins identified in a SummarizedExperiment object
prot.plot_pca()
Plot Results of Principal Component Analysis
prot.plot_screeplot()
SCREE plot
prot.plot_upset()
Plot an UpSet enrichment plot
prot.plot_volcano()
Plots a volcano plot for a given contrast
prot.read_data()
Read proteomics data in table format and create SummarizedExperiment
prot.report()
Report Proteomics Data
prot.test_diff()
Test Differential Expression
prot.workflow()
Run a complete proteomics analysis workflow.
prot_to_map()
Title
read_file()
Call the appropriate function required to read a table file and return the table as a dataframe object.
read_flux()
Reads flux data from a file or data frame
rna.filter_missing()
Filter genes based on missing values
rna.impute()
Impute missing values in a SummarizedExperiment object
rna.make_se()
Create a SummarizedExperiment object
rna.plot_bar()
Plot bar plots for gene abundance or fold change
rna.plot_corrheatmap()
Plot a correlation heatmap
rna.plot_heatmap()
Plots a heatmap of the differentially expressed genes
rna.plot_imputation()
Plot imputation results
rna.plot_numbers()
Plot the number of genes identified in a DESeqDataSet object
rna.plot_pca()
Plot Results of Principal Component Analysis
rna.plot_volcano()
Plots a volcano plot for a given contrast
rna.read_data()
Read Transcriptomics Data
rna.report()
Generate a transcriptomics analysis report
rna.workflow()
RNA sequencing workflow
svg_to_pdf()
Convert SVG to PDF
theme_DEP1()
theme_DEP1
theme_DEP2()
Theme DEP2