met.plot_PCA2DScore
visualizes clusters of samples based on their similarity in principal component analysis.
Usage
met.plot_PCA2DScore(
mSetObj = NA,
imgName = "PCA_2DScores",
format = "pdf",
dpi = NULL,
subtitle = FALSE,
width = NA,
pcx,
pcy,
reg = 0.95,
show = 1,
grey.scale = 0,
plot = TRUE,
export = TRUE
)
Arguments
- mSetObj
Input name of the created mSet object, Data container after principal component analysis (
met.PCA.Anal
).- imgName
(Character) Enter a name for the image file (if
export = TRUE
).- format
(Character,
"png"
or"pdf"
) image file format (ifexport = TRUE
).- dpi
(Numeric) resolution of the image file (if
export = TRUE
). IfNULL
, the resolution will be chosen automatically based on the chosen file format (300 dpi for PNG, 72 dpi for PDF)- subtitle
(Logical,
TRUE
orFALSE
) Shall the applied data transformation and scaling methods be displayed below the plot title?- width
(Numeric) width of the the image file in inches (if
export = TRUE
).- pcx
Specify the principal component on the x-axis
- pcy
Specify the principal component on the y-axis
- reg
Numeric, input a number between 0 and 1, 0.95 will display the 95 percent confidence regions, and 0 will not.
- show
Display sample names,
1
= show names,0
= do not show names.- grey.scale
Use grey-scale colors,
1
= grey-scale,0
= not grey-scale.- plot
(Logical,
TRUE
orFALSE
) Shall the plot be returned in the RStudio 'Plots' pane?- export
(Logical,
TRUE
orFALSE
) Shall the plot be exported as PDF or PNG file?
Value
The input mSet object with added scatter plot. The plot can be retrieved from within R via print(mSetObj$imgSet$pca.score2d_PCx_PCy.plot)
.
References
adapted from PlotPCA2DScore
(https://github.com/xia-lab/MetaboAnalystR).
Author
Nicolas T. Wirth mail.nicowirth@gmail.com Technical University of Denmark License: GNU GPL (>= 2)