Performs 'regularized log' transformation followed by PCA on a given DESeqDataSet object and plots the results.
Usage
rna.plot_pca(
dds,
x = 1,
y = 2,
indicate = c("condition", "replicate"),
title = NULL,
label = FALSE,
n = ncol(t(SummarizedExperiment::assay(dds))),
point_size = 4,
label_size = 3,
hline = 0,
hlineType = "longdash",
hlineCol = "black",
hlineWidth = 0.4,
vline = 0,
vlineType = "longdash",
vlineCol = "black",
vlineWidth = 0.4,
basesize = 15,
plot = TRUE,
export = TRUE
)
Arguments
- x
x-axis PC (default: 1)
- y
y-axis PC (default: 2)
- indicate
features to indicate in the plot ("condition" or "replicate")
- title
title of the plot (default: "PCA plot - top
n
variable genes")- label
whether to label points in the plot (default: FALSE)
- n
number of variables to take into account, sorted according to their variance in descending order. Only the
n
most variable genes are used to perform PCA. default: number of columns indep
)- point_size
size of points in the plot (default: 4)
- label_size
size of labels in the plot (default: 3)
- hline
position of horizontal line (default: 0)
- hlineType
type of horizontal line (default: 'longdash')
- hlineCol
color of horizontal line (default: 'black')
- hlineWidth
width of horizontal line (default: 0.4)
- vline
position of vertical line (default: 0)
- vlineType
type of vertical line (default: 'longdash')
- vlineCol
color of vertical line (default: 'black')
- vlineWidth
width of vertical line (default: 0.4)
- basesize
base size of the plot (default: 15)
- plot
whether to return the PCA plot (default: TRUE)
- export
whether to export the PCA plot to the Plots directory as PNG and PDF file (default: TRUE)
- dep
DESeqDataSet object