Function reference
-
biosensor.eq()
- Internal function used to fit a biosensor response model with
nlsLM
-
export_RData()
- Export an R object as .RData file
-
export_Table()
- Export a tabular object as tab-separated .txt file
-
fl.control()
- Create a
fl.control
object.
-
fl.drFit()
- Fit a biosensor model (Meyer et al., 2019) to response vs. concentration data
-
fl.drFitModel()
- Perform a biosensor model fit on response vs. concentration data of a single sample.
-
fl.report()
- Create a PDF and HTML report with results from a fluorescence analysis workflow
-
fl.workflow()
- Run a complete fluorescence curve analysis and dose-reponse analysis workflow.
-
flBootSpline()
- flBootSpline: Function to generate a bootstrap
-
flFit()
- Perform a fluorescence curve analysis on all samples in the provided dataset.
-
flFitLinear()
- Data fit via a heuristic linear method
-
flFitSpline()
- Perform a smooth spline fit on fluorescence data
-
growth.control()
- Create a
grofit.control
object.
-
growth.drBootSpline()
- Perform a smooth spline fit on response vs. concentration data of a single sample
-
growth.drFit()
- Perform a dose-response analysis on response vs. concentration data
-
growth.drFitModel()
- Fit various models to response vs. concentration data of a single sample to determine the EC50.
-
growth.drFitSpline()
- Perform a smooth spline fit on response vs. concentration data of a single sample to determine the EC50.
-
growth.gcBootSpline()
- Perform a bootstrap on growth vs. time data followed by spline fits for each resample
-
growth.gcFit()
- Perform a growth curve analysis on all samples in the provided dataset.
-
growth.gcFitLinear()
- Fit an exponential growth model with a heuristic linear method
-
growth.gcFitModel()
- Fit nonlinear growth models to growth data
-
growth.gcFitSpline()
- Perform a smooth spline fit on growth data
-
growth.report()
- Create a PDF and HTML report with results from a growth curve analysis workflow
-
growth.workflow()
- Run a complete growth curve analysis and dose-reponse analysis workflow.
-
inflect()
- Find indices of maxima an minima in a data series
-
lm_parms()
lm_window()
- Helper functions for handling linear fits.
-
low.integrate()
- Function to estimate the area under a curve given as x and y(x) values
-
parse_Gen5Gen6()
- Extract relevant data from a raw data export file generated with the "Gen5" or "Gen6" software.
-
parse_data()
- Parse raw plate reader data and convert it to a format compatible with QurvE
-
parse_victornivo()
- Extract relevant data from a raw data export file generated from the software of Perkin Elmer's "Victor Nivo" plate readers.
-
parse_victorx3()
- Extract relevant data from a raw data export file generated from the software of Perkin Elmer's "Victor X3" plate readers.
-
plot(<drBootSpline>)
- Generic plot function for
gcBootSpline
objects.
-
plot(<drFit>)
- Generic plot function for
drFit
objects.
-
plot(<drFitFLModel>)
- Generic plot function for
drFitFLModel
objects.
-
plot(<drFitModel>)
- Generic plot function for
drFitModel
objects.
-
plot(<drFitSpline>)
- Generic plot function for
drFitSpline
objects.
-
plot(<drFitfl>)
- Generic plot function for
drFitFL
objects.
-
plot(<dr_parameter>)
- Compare calculated dose-response parameters between conditions.
-
plot(<dual>)
- Compare fluorescence and growth over time
-
plot(<flBootSpline>)
- Generic plot function for
flBootSpline
objects.
-
plot(<flFitLinear>)
- Generic plot function for
flcFittedLinear
objects. Plot the results of a linear regression on ln-transformed data
-
plot(<flFitRes>)
plot(<flFit>)
- Combine different groups of samples into a single plot
-
plot(<flFitSpline>)
- Generic plot function for
flFitSpline
objects.
-
plot(<gcBootSpline>)
- Generic plot function for
gcBootSpline
objects.
-
plot(<gcFitLinear>)
- Generic plot function for
gcFittedLinear
objects. Plot the results of a linear regression on ln-transformed data
-
plot(<gcFitModel>)
- Generic plot function for
gcFitModel
objects.
-
plot(<gcFitSpline>)
- Generic plot function for
gcFitSpline
objects.
-
plot(<grid>)
- Plot a matrix of growth curve panels
-
plot(<grodata>)
- Generic plot function for
grodata
objects. Plots raw growth, fluorescence, or normalized fluorescence data of multiple samples or conditions.
-
plot(<grofit>)
- Generic plot function for
grofit
objects. Combine different groups of samples into a single plot
-
plot(<parameter>)
- Compare growth parameters between samples or conditions
-
rdm.data()
- The function calls the
baranyi
function to generate curves between time zero andt
and adds some random noise to the x- and y-axes. The three growth parameters given as input values will be slightly changed to produce different growth curves. The resulting datasets can be used to test thegrowth.workflow
function.
-
read_data()
- Read growth and fluorescence data in table format
-
read_file()
- Call the appropriate function required to read a table file and return the table as a dataframe object.
-
run_app()
- Run Shiny QurvE App
-
summary(<drBootSpline>)
- Generic summary function for drBootSpline objects
-
summary(<drFit>)
- Generic summary function for drFit objects
-
summary(<drFitFLModel>)
- Generic summary function for drFitFLModel objects
-
summary(<drFitModel>)
- Generic summary function for drFitModel objects
-
summary(<drFitSpline>)
- Generic summary function for drFitSpline objects
-
summary(<drFitfl>)
- Generic summary function for drFitfl objects
-
summary(<flBootSpline>)
- Generic summary function for flBootSpline objects
-
summary(<flFit>)
- Generic summary function for flFit objects
-
summary(<flFitLinear>)
- Generic summary function for flFitLinear objects
-
summary(<flFitSpline>)
- Generic summary function for flFitSpline objects
-
summary(<gcBootSpline>)
- Generic summary function for gcBootSpline objects
-
summary(<gcFit>)
- Generic summary function for gcFit objects
-
summary(<gcFitLinear>)
- Generic summary function for gcFitLinear objects
-
summary(<gcFitModel>)
- Generic summary function for gcFitModel objects
-
summary(<gcFitSpline>)
- Generic summary function for gcFitSpline objects
-
table_group_fluorescence_linear()
- Generate a grouped results table for linear fits with average and standard deviations
-
table_group_fluorescence_spline()
- Generate a grouped results table for spline fits with average and standard deviations
-
table_group_growth_linear()
- Generate a grouped results table for linear fits with average and standard deviations
-
table_group_growth_model()
- Generate a grouped results table for parametric fits with average and standard deviations
-
table_group_growth_spline()
- Generate a grouped results table for spline fits with average and standard deviations
-
zipFastener()
- Combine two dataframes like a zip-fastener