Skip to contents

All functions

biosensor.eq()
Internal function used to fit a biosensor response model with nlsLM
export_RData()
Export an R object as .RData file
export_Table()
Export a tabular object as tab-separated .txt file
fl.control()
Create a fl.control object.
fl.drFit()
Fit a biosensor model (Meyer et al., 2019) to response vs. concentration data
fl.drFitModel()
Perform a biosensor model fit on response vs. concentration data of a single sample.
fl.report()
Create a PDF and HTML report with results from a fluorescence analysis workflow
fl.workflow()
Run a complete fluorescence curve analysis and dose-reponse analysis workflow.
flBootSpline()
flBootSpline: Function to generate a bootstrap
flFit()
Perform a fluorescence curve analysis on all samples in the provided dataset.
flFitLinear()
Data fit via a heuristic linear method
flFitSpline()
Perform a smooth spline fit on fluorescence data
growth.control()
Create a grofit.control object.
growth.drBootSpline()
Perform a smooth spline fit on response vs. concentration data of a single sample
growth.drFit()
Perform a dose-response analysis on response vs. concentration data
growth.drFitModel()
Fit various models to response vs. concentration data of a single sample to determine the EC50.
growth.drFitSpline()
Perform a smooth spline fit on response vs. concentration data of a single sample to determine the EC50.
growth.gcBootSpline()
Perform a bootstrap on growth vs. time data followed by spline fits for each resample
growth.gcFit()
Perform a growth curve analysis on all samples in the provided dataset.
growth.gcFitLinear()
Fit an exponential growth model with a heuristic linear method
growth.gcFitModel()
Fit nonlinear growth models to growth data
growth.gcFitSpline()
Perform a smooth spline fit on growth data
growth.report()
Create a PDF and HTML report with results from a growth curve analysis workflow
growth.workflow()
Run a complete growth curve analysis and dose-reponse analysis workflow.
inflect()
Find indices of maxima an minima in a data series
lm_parms() lm_window()
Helper functions for handling linear fits.
low.integrate()
Function to estimate the area under a curve given as x and y(x) values
parse_Gen5Gen6()
Extract relevant data from a raw data export file generated with the "Gen5" or "Gen6" software.
parse_data()
Parse raw plate reader data and convert it to a format compatible with QurvE
parse_victornivo()
Extract relevant data from a raw data export file generated from the software of Perkin Elmer's "Victor Nivo" plate readers.
parse_victorx3()
Extract relevant data from a raw data export file generated from the software of Perkin Elmer's "Victor X3" plate readers.
plot(<drBootSpline>)
Generic plot function for gcBootSpline objects.
plot(<drFit>)
Generic plot function for drFit objects.
plot(<drFitFLModel>)
Generic plot function for drFitFLModel objects.
plot(<drFitModel>)
Generic plot function for drFitModel objects.
plot(<drFitSpline>)
Generic plot function for drFitSpline objects.
plot(<drFitfl>)
Generic plot function for drFitFL objects.
plot(<dr_parameter>)
Compare calculated dose-response parameters between conditions.
plot(<dual>)
Compare fluorescence and growth over time
plot(<flBootSpline>)
Generic plot function for flBootSpline objects.
plot(<flFitLinear>)
Generic plot function for flcFittedLinear objects. Plot the results of a linear regression on ln-transformed data
plot(<flFitRes>) plot(<flFit>)
Combine different groups of samples into a single plot
plot(<flFitSpline>)
Generic plot function for flFitSpline objects.
plot(<gcBootSpline>)
Generic plot function for gcBootSpline objects.
plot(<gcFitLinear>)
Generic plot function for gcFittedLinear objects. Plot the results of a linear regression on ln-transformed data
plot(<gcFitModel>)
Generic plot function for gcFitModel objects.
plot(<gcFitSpline>)
Generic plot function for gcFitSpline objects.
plot(<grid>)
Plot a matrix of growth curve panels
plot(<grodata>)
Generic plot function for grodata objects. Plots raw growth, fluorescence, or normalized fluorescence data of multiple samples or conditions.
plot(<grofit>)
Generic plot function for grofit objects. Combine different groups of samples into a single plot
plot(<parameter>)
Compare growth parameters between samples or conditions
rdm.data()
The function calls the baranyi function to generate curves between time zero and t and adds some random noise to the x- and y-axes. The three growth parameters given as input values will be slightly changed to produce different growth curves. The resulting datasets can be used to test the growth.workflow function.
read_data()
Read growth and fluorescence data in table format
read_file()
Call the appropriate function required to read a table file and return the table as a dataframe object.
run_app()
Run Shiny QurvE App
summary(<drBootSpline>)
Generic summary function for drBootSpline objects
summary(<drFit>)
Generic summary function for drFit objects
summary(<drFitFLModel>)
Generic summary function for drFitFLModel objects
summary(<drFitModel>)
Generic summary function for drFitModel objects
summary(<drFitSpline>)
Generic summary function for drFitSpline objects
summary(<drFitfl>)
Generic summary function for drFitfl objects
summary(<flBootSpline>)
Generic summary function for flBootSpline objects
summary(<flFit>)
Generic summary function for flFit objects
summary(<flFitLinear>)
Generic summary function for flFitLinear objects
summary(<flFitSpline>)
Generic summary function for flFitSpline objects
summary(<gcBootSpline>)
Generic summary function for gcBootSpline objects
summary(<gcFit>)
Generic summary function for gcFit objects
summary(<gcFitLinear>)
Generic summary function for gcFitLinear objects
summary(<gcFitModel>)
Generic summary function for gcFitModel objects
summary(<gcFitSpline>)
Generic summary function for gcFitSpline objects
table_group_fluorescence_linear()
Generate a grouped results table for linear fits with average and standard deviations
table_group_fluorescence_spline()
Generate a grouped results table for spline fits with average and standard deviations
table_group_growth_linear()
Generate a grouped results table for linear fits with average and standard deviations
table_group_growth_model()
Generate a grouped results table for parametric fits with average and standard deviations
table_group_growth_spline()
Generate a grouped results table for spline fits with average and standard deviations
zipFastener()
Combine two dataframes like a zip-fastener