Function reference
-
biosensor.eq() - Internal function used to fit a biosensor response model with
nlsLM
-
export_RData() - Export an R object as .RData file
-
export_Table() - Export a tabular object as tab-separated .txt file
-
fl.control() - Create a
fl.controlobject.
-
fl.drFit() - Fit a biosensor model (Meyer et al., 2019) to response vs. concentration data
-
fl.drFitModel() - Perform a biosensor model fit on response vs. concentration data of a single sample.
-
fl.report() - Create a PDF and HTML report with results from a fluorescence analysis workflow
-
fl.workflow() - Run a complete fluorescence curve analysis and dose-reponse analysis workflow.
-
flBootSpline() - flBootSpline: Function to generate a bootstrap
-
flFit() - Perform a fluorescence curve analysis on all samples in the provided dataset.
-
flFitLinear() - Data fit via a heuristic linear method
-
flFitSpline() - Perform a smooth spline fit on fluorescence data
-
growth.control() - Create a
grofit.controlobject.
-
growth.drBootSpline() - Perform a smooth spline fit on response vs. concentration data of a single sample
-
growth.drFit() - Perform a dose-response analysis on response vs. concentration data
-
growth.drFitModel() - Fit various models to response vs. concentration data of a single sample to determine the EC50.
-
growth.drFitSpline() - Perform a smooth spline fit on response vs. concentration data of a single sample to determine the EC50.
-
growth.gcBootSpline() - Perform a bootstrap on growth vs. time data followed by spline fits for each resample
-
growth.gcFit() - Perform a growth curve analysis on all samples in the provided dataset.
-
growth.gcFitLinear() - Fit an exponential growth model with a heuristic linear method
-
growth.gcFitModel() - Fit nonlinear growth models to growth data
-
growth.gcFitSpline() - Perform a smooth spline fit on growth data
-
growth.report() - Create a PDF and HTML report with results from a growth curve analysis workflow
-
growth.workflow() - Run a complete growth curve analysis and dose-reponse analysis workflow.
-
inflect() - Find indices of maxima an minima in a data series
-
lm_parms()lm_window() - Helper functions for handling linear fits.
-
low.integrate() - Function to estimate the area under a curve given as x and y(x) values
-
parse_Gen5Gen6() - Extract relevant data from a raw data export file generated with the "Gen5" or "Gen6" software.
-
parse_data() - Parse raw plate reader data and convert it to a format compatible with QurvE
-
parse_victornivo() - Extract relevant data from a raw data export file generated from the software of Perkin Elmer's "Victor Nivo" plate readers.
-
parse_victorx3() - Extract relevant data from a raw data export file generated from the software of Perkin Elmer's "Victor X3" plate readers.
-
plot(<drBootSpline>) - Generic plot function for
gcBootSplineobjects.
-
plot(<drFit>) - Generic plot function for
drFitobjects.
-
plot(<drFitFLModel>) - Generic plot function for
drFitFLModelobjects.
-
plot(<drFitModel>) - Generic plot function for
drFitModelobjects.
-
plot(<drFitSpline>) - Generic plot function for
drFitSplineobjects.
-
plot(<drFitfl>) - Generic plot function for
drFitFLobjects.
-
plot(<dr_parameter>) - Compare calculated dose-response parameters between conditions.
-
plot(<dual>) - Compare fluorescence and growth over time
-
plot(<flBootSpline>) - Generic plot function for
flBootSplineobjects.
-
plot(<flFitLinear>) - Generic plot function for
flcFittedLinearobjects. Plot the results of a linear regression on ln-transformed data
-
plot(<flFitRes>)plot(<flFit>) - Combine different groups of samples into a single plot
-
plot(<flFitSpline>) - Generic plot function for
flFitSplineobjects.
-
plot(<gcBootSpline>) - Generic plot function for
gcBootSplineobjects.
-
plot(<gcFitLinear>) - Generic plot function for
gcFittedLinearobjects. Plot the results of a linear regression on ln-transformed data
-
plot(<gcFitModel>) - Generic plot function for
gcFitModelobjects.
-
plot(<gcFitSpline>) - Generic plot function for
gcFitSplineobjects.
-
plot(<grid>) - Plot a matrix of growth curve panels
-
plot(<grodata>) - Generic plot function for
grodataobjects. Plots raw growth, fluorescence, or normalized fluorescence data of multiple samples or conditions.
-
plot(<grofit>) - Generic plot function for
grofitobjects. Combine different groups of samples into a single plot
-
plot(<parameter>) - Compare growth parameters between samples or conditions
-
rdm.data() - The function calls the
baranyifunction to generate curves between time zero andtand adds some random noise to the x- and y-axes. The three growth parameters given as input values will be slightly changed to produce different growth curves. The resulting datasets can be used to test thegrowth.workflowfunction.
-
read_data() - Read growth and fluorescence data in table format
-
read_file() - Call the appropriate function required to read a table file and return the table as a dataframe object.
-
run_app() - Run Shiny QurvE App
-
summary(<drBootSpline>) - Generic summary function for drBootSpline objects
-
summary(<drFit>) - Generic summary function for drFit objects
-
summary(<drFitFLModel>) - Generic summary function for drFitFLModel objects
-
summary(<drFitModel>) - Generic summary function for drFitModel objects
-
summary(<drFitSpline>) - Generic summary function for drFitSpline objects
-
summary(<drFitfl>) - Generic summary function for drFitfl objects
-
summary(<flBootSpline>) - Generic summary function for flBootSpline objects
-
summary(<flFit>) - Generic summary function for flFit objects
-
summary(<flFitLinear>) - Generic summary function for flFitLinear objects
-
summary(<flFitSpline>) - Generic summary function for flFitSpline objects
-
summary(<gcBootSpline>) - Generic summary function for gcBootSpline objects
-
summary(<gcFit>) - Generic summary function for gcFit objects
-
summary(<gcFitLinear>) - Generic summary function for gcFitLinear objects
-
summary(<gcFitModel>) - Generic summary function for gcFitModel objects
-
summary(<gcFitSpline>) - Generic summary function for gcFitSpline objects
-
table_group_fluorescence_linear() - Generate a grouped results table for linear fits with average and standard deviations
-
table_group_fluorescence_spline() - Generate a grouped results table for spline fits with average and standard deviations
-
table_group_growth_linear() - Generate a grouped results table for linear fits with average and standard deviations
-
table_group_growth_model() - Generate a grouped results table for parametric fits with average and standard deviations
-
table_group_growth_spline() - Generate a grouped results table for spline fits with average and standard deviations
-
zipFastener() - Combine two dataframes like a zip-fastener